

Zero-IF Tuner IC for Digital Satellite Broadcast

CXD2832AER

Description

The CXD2832AER is an IC developed for direct orthogonal detection of 1st IF signal (1 to 2 GHz) from RF converter block in a digital satellite broadcast receiver system. The CXD2832AER incorporates all the functions (LNA, RF gain control amplifier, VCO, mixer, baseband LPF, baseband gain control amplifier, tuning PLL) required for a satellite broadcast tuner.

Applications

- Digital TV
- ◆ STB for digital satellite broadcasting
- ◆ BD recorder

Features

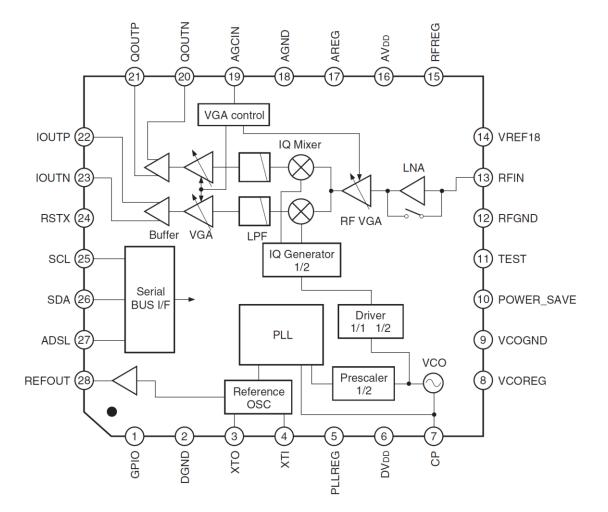
- Low noise figure : 5 dB (typ.)
- Low power consumption: 400 mW (typ.) (Includes internal LNA circuit)
- Clock output for a demodulator LSI
- Input pin for controlling of power saving mode
- Small package: 28 pin VQFN 5 mm × 5 mm (0.5 mm pitch)

Absolute Maximum Ratings

 Supply voltage 	AV_{DD}, DV_{DD}	-0.3 to +3.6	V (Ta = 25 °C)
 Storage temperature 	Tstg	-55 to +150	°C

Operating Conditions

 Supply voltage 	AV_{DD}, DV_{DD}	2.375 to 3.465 V
 Operating temperature 	Topr1	-20 to +85 °C (AV _{DD} , $DV_{DD} \le 2.8 \text{ V}$)
 Operating temperature 	Topr2	-20 to +75 °C (AV _{DD} , DV _{DD} > 2.8 V)
 Allowable power dissipation 	on	2.2 W (30 mm \times 60 mm, t = 1.0 mm, mounted on 2 layer board)


Note) This IC has pins whose electrostatic discharge strength is weak as the high-frequency process is used. Handle the IC with care. Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Contents	
Description	1
Features	1
Absolute Maximum Ratings	1
Operating Conditions	1
Basic Specifications	3
Pin configuration and Block Diagram	4
Pin Description and Input / Output Pin Equivalent Circuit	5
Electrical Characteristics Measurement Circuit	9
Electrical Characteristics	10
DC and analog characteristics	10
Electrical Characteristics of Logic block	13
Power-on sequence	14
Description of Operation	15
Analog part	15
Serial Bus Interface part	16
Slave Address Selection	16
Writing and reading procedure	18
Description of SCL and SDA Signal during Bus Communication	18
Detailed Description of Registers	19
Tuning Procedure	25
Example of Representative Characteristics	26
Application Circuit	28
Application for Single tuner	28
Application for double tuner	29
Package outline	30
Marking	30

Basic Specifications

Receiving frequency range	950 to 2150	MHz
Input signal range	-85 to -10	dBm
(internal LNA enabled)		
Power supply voltage	2.5 or 3.3	V
Standard baseband output level	0.7	Vp-р
Tuning frequency step	1	MHz
(PLL comparison frequency)		
Baseband bandwidth	5 to 36	MHz
	(1 MHz step variable)	
Clock frequency	16 or 24 or 27	MHz

Pin configuration and Block Diagram

Description of Block Diagram

The block names shown in the block diagram above have the following functions.

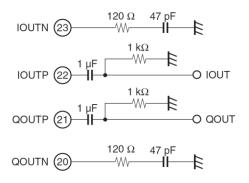
Reference OSC	Crystal oscillation circuit for reference clock
Serial BUS I/F	Interface block for serial bus
PLL	Tuning PLL
Prescaler	PLL fixed divider
VCO	VCO circuit for local signal
Divider	Frequency divider for local signal
IQ Generator	Frequency divider for IQ signal
LNA	Low Noise Amplifier
RF VGA	Gain control amplifier for RF signal
IQ Mixer	Quadrature demodulator (Mixer circuit)
LPF	Low Pass Filter
VGA	Gain control amplifier for baseband signal
Buffer	Output buffer circuit for baseband signal
VGA control	gain variation characteristic control circuit

Pin Description and Input / Output Pin Equivalent Circuit

(Pin voltage shows typical DC voltage value when AGCI = 0 V)

Pin No	Symbol	Pin voltage [V]	Equivalent circuit	Description
1	GPIO	0/1.9	6 DVDD PLLREG 5 1 H H H H H H H H H H H H H H H H H H H	General purpose output
2	DGND	0		GND Pin for PLL and logic circuits
3, 4	XTO XTI	0.6 0.6	6 DVDD 5 PLLREG 5 PLLREG 5 0 Ω 50 Ω 50 Ω 500 Ω 5 100 kΩ 4 2 DGND	Crystal oscillator connection for reference clock. When it is used as external clock input instead of crystal connection, please use XTI pin as clock input, and connect XTO to GND via capacitance.
5	PLLREG	1.9	6 DVDD 5 830 Ω 830 Ω 15 kΩ 2 DGND	External capacitor connection pin for regulator of PLL circuit. Please connect GND via capacitor of 1 μ F or more.
6	DVDD	2.5		PLL and logic power supply
7	СР	0.9	6 DVDD PLLREG 5 7 W W C 2 DGND	Charge pump output for tuning PLL

Pin No	Symbol	Pin voltage [V]	Equivalent circuit	Description
8	VCOREG	1.9	6 DVDD 8 4 15 kΩ 5 9 VCOGND	External capacitor connection pin for regulator of VCO circuit. Please connect GND via capacitor of 1 μF or more.
9	VCOGND	0		GND for VCO
10	POWER_SAVE	0/2.5/3.3	10 500 Ω 10 100 kΩ 2 DGND	Power save control pin. Crystal oscillator stops and internal circuit changes to power saving mode when High.
11	TEST	1.0	$16 \xrightarrow{\text{AV}_{\text{DD}}} \xrightarrow{\text{RFREG}} 15$ $10 \text{ k}\Omega$ $11 \xrightarrow{\text{I}} 10 \text{ k}\Omega$ $12 \xrightarrow{\text{RFGND}} 10 \text{ k}\Omega$	Test pin No connect
12	RFGND	0		GND for RF circuits
13	RFIN	0	16 AVDD 13 T RFGND RFREG 15 T T RFREG 15 T T RFREG T S	Input for RF signal
14	VREF18	1.8	$16 \xrightarrow{\text{AVDD}} \xrightarrow{\text{AREG}} 17$ $16 \xrightarrow{\text{AVDD}} 1 \text{ k}\Omega$ $14 \xrightarrow{\text{S} 9 \text{ k}\Omega}$ $18 \xrightarrow{\text{AGND}}$	Connecting capacitor for internal reference voltage. Please connect GND via capacitor of 1 μF or more.


Pin No	Symbol	Pin voltage [V]	Equivalent circuit	Description
15	RFREG	2.0	16 4VDD 15 10 KΩ 10 KΩ 10 KΩ 10 KΩ 10 KΩ 10 KΩ	External capacitor connection pin for regulator of RF circuit. Please connect GND via capacitor of 1 μF or more.
16	AVDD	2.5		
17	AREG	2.0	16 4V _{DD} 17 10 kΩ 10 kΩ 18 AGND	External capacitor connection pin for regulator of base band circuit. Please connect GND via capacitor of 1 μF or more.
18	AGND	0		GND for analog circuits
19	AGCIN	0 to 3.3	19 10 KΩ	Gain control pin for internal VGA circuits.
20 21 22 23	QOUTN QOUTP IOUTP IOUTN	1.0	$\begin{array}{c} 16 \\ \hline AV_{DD} \\ \hline 22 \\ \hline 23 \\ \hline 23 \\ \hline 10 \\ \hline 4 \\ \hline 50 \\ \hline 10 \\ \hline 55 \\ \hline 10 \\ \hline 55 \\ \hline 10 \\ \hline 10 \\ \hline 55 \\ \hline 10 \\ $	Baseband signal output

Pin No	Symbol	Pin voltage [V]	Equivalent circuit	Description
24	RSTX	Hi-Z		Negative logic hardware reset pin Hardware reset is necessary when power up.
25	SCL	Hi-Z	25 -500 Ω - - - - - - - - - - - - -	Clock input for serial bus
26	SDA	Hi-Z	26 500 Ω 500 Ω W C C DGND	Data input and output for serial bus
27	ADSL	0 to 2.2	6 DVDD PLLREG 5 30 kΩ 27	Serial bus slave address setting
28	REFOUT	Hi-Z	6 DVDD PLLREG 5 28 W F 20 DGND	Reference clock signal output

Electrical Characteristics Measurement Circuit

Measurement circuit for single-end output.

Electrical Characteristics

DC and analog characteristics

See the Electrical Characteristics Measurement Circuit on page 9

Circuit voltage = 2.5 V, Ta = 25 °C

Unless otherwise specified the measuring condition is RF frequency = 2150 MHz, full gain (AGCI = 0 V)

DC Items

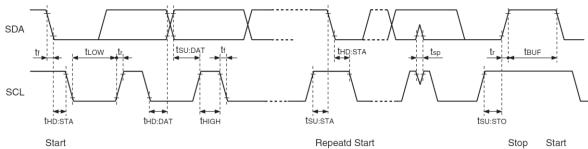
Item	Symbol	Condition	Min	Тур.	Max	Unit
Circuit current-1	IDD-1	Current at DV _{DD} pin	48	60	70	mA
Circuit current-2	IDD-2	Current at AV _{DD} pin	72	97	125	mA
Circuit current-3	IDD-3	Current at AV_{DD} pin when internal LNA bypassed	61	79	105	mA
Power save current 1	PSIDD-1	DV_{DD} pin when clock is disabled		1	3	mA
Power save current 2	PSIDD-2	AV_{DD} pin when LNA is enabled	14	27	40	mA
Power save current 3	PSIDD-3	AV_{DD} pin when LNA is bypassed	3	9	20	mA
SDA, SCL, RSTX, POWER_SAVE	E pin					
High level input voltage	VIH		2.0		3.6	V
Low level input voltage	VIL		GND		1	V
SDA pin						
Low level output voltage	VOL1	Source current: 3 mA	GND		0.4	V
GPIO pin						
High level output voltage	VPH	Source current: 3 mA	1.7	1.9	2.1	V
Low level output voltage	VPL	Sink current:3 mA	0.0		0.2	V
Drive current	IGD	Source/Sink current			3	mA
AGCIN pin						
Input voltage range	VIAH		0		3.6	V
Input current	ILAH	AGCIN = 3.3 V		160	250	μA
OTHER						
Input current of RSTX pin	ILRH	Input Voltage = 3.3 V			10	μA
Input current of POWER_SAVE	ILAH	Input Voltage = 3.3 V			10	μA

Analog Characteristics

Unless otherwise specified, AGCIN voltage that gives 0.7 Vp-pd differential output level

Item	Symbol	condition	Min	Тур	Max	Unit
	RFIL1	Internal LNA enabled	-85		-10	dBm
Input level	RFIL2	Internal LNA bypassed	-75		0	dBm
	VIQ1	Differential output *1			1.5	Vp-pd
IQ output level	VIQ2	Single-end output *1			1	Vр-р
IQ phase error	EPH	When RF input level is -40 dBm	-3.0	0	+3.0	deg
IQ Amplitude error	EAMP	When RF input level is -40 dBm	-1.0	0	+1.0	dB
	NF1	Internal LNA enabled		5	8	dB
Noise Figure	NF2	Internal LNA bypassed		8	12	dB
	VSWR1	Internal LNA enabled		2	2.5	
RF input VSWR	VSWR2	Internal LNA bypassed		3	4.5	
		When RF input level is -40 dBm				
	PN1	f _{RF} = 2150 MHz	-89		-85	dBc/Hz
VCO phase noise		100 kHz offset				
	PN2	10 kHz offset		-86	-83	dBc/Hz
	PN3	1 kHz offset		-83	-80	dBc/Hz
		Internal LNA enabled				
	IIP3L	When desired signal input level is -20 dBm.				
		Calculated from IM3 measurement result by		9		dBm
IIP3		2 signals,				
		f_{LO} + 5 MHz, f_{LO} + 7 MHz				
	IIP3R	Internal LNA bypassed		10		dBm
	IIPSK	Same measurement condition as IIP3L	12			UDITI
		Internal LNA enabled				
		Calculates from IM2 by interference signal				
	IIP2L	of 1040 MHz -20 dBm and 1100 MHz -20		14		dBm
IIP2		dBm when setting desired signal				
		$f_{RF} = 2140 \text{ MHz} - 20 \text{ dBm}$				
	IIP2R	Internal LNA bypassed		30		dBm
		Same measurement condition as IIP2L		50		ubiii
RF Local Leak	LOL	Local OSC leak to RFIN	-	-	-65	dBm
PLL Reference Leak	REFL	When $f_{REF} = 1 \text{ MHz}$	-	-65	-50	dBc
LPF attenuation 1	LPFC1	Attenuation at LPF setting value (fc)	8	5	1	dB
LPF attenuation 2	LPFC2	Attenuation at twice frequency of LPF setting.	20	30	40	dB

Item	Symbol	condition	Min	Тур	Max	Unit
REF OUT Level	ROL	1 kΩ loaded	0.3	0.6	0.8	Vр-р
REFOUT maximum load	ROD	1 kΩ loaded			20	pF
	VIXI1	When using as external input (under $DV_{DD} = 0 v$)	0	-	0.70	Vр-р
XTI pin input level	VIXI2	When using as external input (under $DV_{DD} = 2.5 V$)	0.35	0.65	1.50	Vр-р
External clock jitter	JIT	When using as external input			10	ps
XI pin capacitance	CXI	When using as external input			5	pF


*1 IQ output level is defined with the output level that gives IM3 35 dB or more.

IM3 measurement condition is same as IIP3.

Electrical Characteristics of Logic block

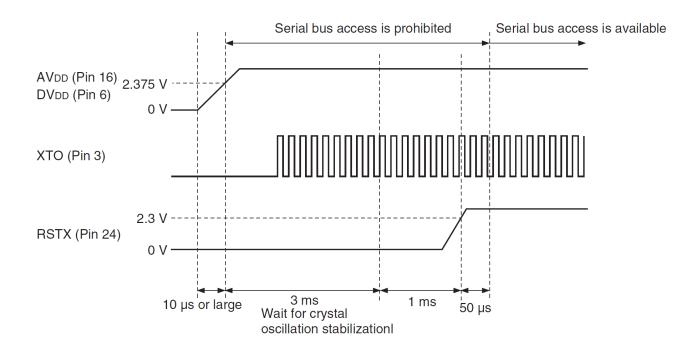
(Circuit voltage = 2.5 V, Ta = 25 °C)

Item	Symbol	condition	Min.	Тур.	Max.	Unit
SCL clock frequency	f _{SCL}		0		400	kHz
Start - Hold time	t _{HD:STA}		600			ns
Stop - Setup time	t _{SU:STO}		600			ns
Bus free time between "STOP" condition and "START" condition	t _{BUF}		1300			ns
Data - Setup time	t _{su:dat}		100			ns
High hold time	t _{HIGH}		600			ns
Data - Hold time	t _{HD:DAT}		0		900	ns
Low hold time	t _{LOW}		1300			ns
Start - Setup time	t _{SU:STA}		600			ns
Rise time	tr				300	ns
Fall time	tf				300	ns
Spike pulse width	T _{sp}				50	ns
Capacitive load of bus line	C _b				400	pF
Hardware Reset pulse width	t _{HR}	Input at 24pin (RSTX)	1			ms

tHD:STA = Hold time (repeated) START condition tLOW = LOW period of the SCL clock tHD:DAT = Data hold time tsu:DAT = Data setup time thigh = HIGH period of the SCL clock tsu:sta = Setup time for a repeated START condition $t_{BUF} = Bus free time between a STOP and START condition$ tsu:sro = Setup time for STOP conditiontr = Rise time of both SDA and SCL signalstr = Fall time of both SDA and SCL signals

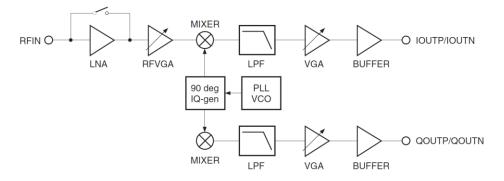
 * When SCL falls, it means START condition if SDA is "0".

* When SCL rises, it means STOP condition if SDA is "1".


Power-on sequence

The sequence from power-on to hardware reset is below.

Set RSTX low level for more than 1 ms or more after stability time of the crystal oscillation.


It is no problem which AV_{DD} (Pin 16) or DV_{DD} (Pin 6) start up first.

The communication of 2way serial bus is available after 50 μ s after canceling hardware reset.

Description of Operation

Analog part

The signal input to RFIN is converted to baseband I-Q signals by I-Q local signal which is generated by PLL circuit and output through buffer amplifier.

LNA : Single input internal LNA which input impedance is about 75 $\boldsymbol{\Omega}.$

RFVGA : In this block, RF gain control is performed.

This block has BPF characteristics to improve immunity to out-band interferer. Center frequency and gain of BPF should be optimized by register F_CTL/G_CTL based on tuning frequency.

The following settings are recommended.

f _{RF} < 975	F_CTL = 11100	G_CTL = 001
975 ≤ f _{RF} < 1050	F_CTL = 11000	G_CTL = 010
$1050 \le f_{RF} < 1150$	F_CTL = 10100	G_CTL = 010
$1150 \le f_{RF} < 1250$	F_CTL = 10000	G_CTL = 011
$1250 \le f_{RF} < 1350$	F_CTL = 01100	G_CTL = 100
$1350 \le f_{RF} < 1450$	F_CTL = 01010	G_CTL = 100
$1450 \le f_{RF} < 1600$	F_CTL = 00111	G_CTL = 101
$1600 \le f_{RF} < 1800$	F_CTL = 00100	G_CTL = 110
$1800 \le f_{RF} < 2000$	F_CTL = 00010	G_CTL = 110
$2000 \leq f_{RF}$	F_CTL = 00000	G_CTL = 111

LPF: The LPF incorporates a 5th order low pass filter. It includes DC feedback circuit which reject DC offset. This DC feedback circuit requires no external capacitor, as it includes capacitor inside IC.

VGA: Base band gain control amplifier. It includes DC feedback circuit which reject DC offset.

This DC feedback circuit requires no external capacitor, as it includes capacitor inside IC.

Buffer: Differential output buffer for the baseband signal. It can be used as a single output IC by termination one side of the differential outputs by the recommended resistor and capacitor.

Serial Bus Interface part

The internal registers of this IC are set via the 2-wire serial bus.

Registers that can be set via the bus have an 8-bit sub address, and this IC uses the sub addresses 00h to 7Fh. (See page

19 and onward for a detailed description of the registers.)

Continuous write and read are possible to registers with continuous sub addresses.

There is no limit to the number of words that can be continuously written or continuously read.

Write to read-only registers is ignored.

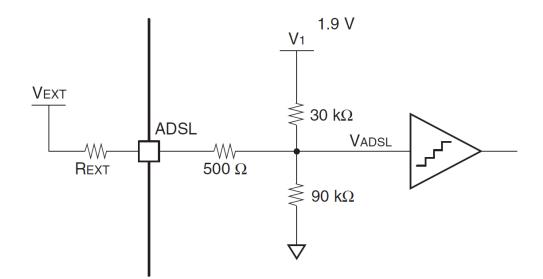
This serial bus can be set regardless of reference clock operation. In addition, the operation speed is also independent of the clock frequency.

Slave Address Selection

Four different slave addresses can be selected by the voltage applied to the ADSL pin to support mounting of multiple tuner ICs.

WRITE mode that sets various data and READ mode that transmits the IC internal register data to the host side are switched by setting the LSB (R/W bit) of the address byte.

Slave addresses


1	1	0	0	0	MA1	MAO	R/W

MA1, MA0 : Portion that changes according to the ADSL pin voltage R/W : WRITE mode and READ mode switching R/W = "0" WRITE mode

R/W = "1" READ mode

ADSL pin voltage	MA1	MA0
0 to 0.19 V	0	0
0.4 to 0.6 V	0	1
0.8 to 1.1 V	1	0
Open	int	nibit
1.71 to 2.2 V	1	1

ADSL Pin voltage is generated by the connection of resistor below.

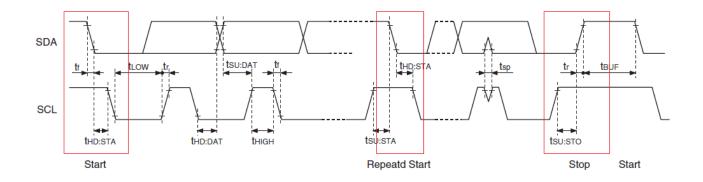
Slave Address	ADSL Pin voltage (V)	Connection of resistor	recommended Value of R_{EXT} (Ω)
C0	0 to 0.19	Connect to GND	0
C2	0.4 to 0.6	Connect to GND via R _{EXT}	10 k
C4	0.8 to 1.1	Connect to GND via R _{EXT}	47 k
	1.71 to 2.2	Connect to PLLREG	0
C6	1.71 to 2.2	Connect to V_{DD} via R_{EXT} (in case of V_{DD} =2.5 V)	22 k or 33 k
	1.71 to 2.2	Connect to V_{DD} via R_{EXT} (in case of V_{DD} =3.3 V)	47 k, or 68 k

Writing and reading procedure

Writing register is performed as follows.

Write slave address -> Write desired sub address -> Write register setting value

This procedure is also applied to continuous write mode that performs continuous write to consecutive sub addresses. Reading register is performed in 1-byte units as follows.


Write slave address -> Write desired sub address -> Repeated start condition -> Write slave address -> Data read Repeated start condition can be substituted by "Stop condition -> Start condition".

This procedure is also applied to continuous read mode that performs continuous read form consecutive sub address.

Description of SCL and SDA Signal during Bus Communication

Start/Stop/Repeated start conditions signals are as shown in the figure below see the specifications for the detail timing.

Detailed Description of Registers

The data noted for each register are the initial values for this	IC.
--	-----

Sub	Desister nome	Dit	DW	Bit position			Description					
address	Register name	Bit	RW	7	6	5	4	3	2	1	0	Description
00	P_COUNT_H[7:0]	8	RW	0	0	0	0	1	0	0	0	PLL main counter frequency division ratio
01	P_COUNT_L[3:0]	4	RW	1	0	0	1					setting P_COUNT = {P_COUNT_H[7:0], P_COUNT_L [3:0]} The settings to the internal counters are executed when they are written to sub address 03h. * Initial value: 12'd137
	S_COUNT[2:0]	3	RW					1	0	0		PLL swallow counter frequency division ratio setting * Initial value: 3'd4
	RESERVE	1	RW								0	RESERVE
02	K_COUNT_H[7:0]	8	RW	0	0	0	0	0	0	0	0	Test register.
03	K_COUNT_L[7:0]	8	RW	0	0	0	0	0	0	0	0	Always set to 00h The values of sub Address 00 to 01 (P_COUNT/S_COUNT) are set when 00h is written to sub address 03h. So write 00h to 03h continuously when set reception frequency.
04	MDIV_SW	1	RW	0								$\label{eq:When MDIV_SW} \begin{split} & \text{When MDIV_SW} \text{ is enabled, the frequency} \\ & \text{division ratio between the VCO and the} \\ & \text{MIXER changes from} \\ & 1/2 \text{ to } 1/4. \\ & 0:Thru. (1155 MHz $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$
	RESERVE[6:0]	7	RW		0	0	0	0	0	0	0	RESERVE
05	CALIB_START	1	RW	0								Calibration start bit. When "1" is set, the CALIB sequence starts and the optimum VCO selection, LPF cut off frequency and CP current setting value are calculated. Always execute calibration when changing the tuning data. 1: Calibration start; this bit automatically returns to "0" after calibration ends.
	RESERVE[6:0]	7	RW		0	0	0	0	0	0	0	RESERVE
06	REF_R[7:0]	8	RW	0	0	0	1	1	0	1	1	PLL comparison frequency setting register. *Initial value: 8'd27
07	FIN[7:0]	8	RW	0	0	0	1	1	0	1	1	Reference clock frequency (crystal oscillation frequency) setting register This is used as the frequency division ratio for the system clock (1 MHz) required by the logic block. *Initial value: 8'd27
08	LT_EN	1	RW	1								Test register Please set 0.
	RESERVE[6:0]	7	RW		0	0	0	0	0	0	0	RESERVE
09	G_CTL[2:0]	3	RW	0	0	0						RFVGA gain control This must be set according to the reception frequency. Max. gain 000 Min. gain 111
	F_CTL[4:0]	5	RW				0	0	0	0	0	RFVGA peak frequency control This must be set according to the reception frequency. (See page 13) 0000: high freq., 11111: low freq

Sub	Desister	D!	DW			Bi	t po	sitio	on			Description
address	Register name	Bit	RW	7	6	5	4	3	2	1	0	Description
0A	OUT_LEVEL[1:0]	2	RW	0	0							IQ output gain and output type selection. In case of using single end output, set 2'b01 or 2'b11. 00: Default (Differential output) 01: Single end output (+ 4.4 dB) 10: Reserve 11: Single end output (-2.4 dB)
	HP_MODE	1	RW			0						Pass bandwidth control of DC feedback 0: normal 1: Low
	GAIN_STEP[1:0]	2	RW				0	0				Test register
	RESERVE[2:0]	3	RW						0	0	0	RESERVE
0B	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
0C	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
0D	PORT	1	RW	0								RESERVE
00	RESERVE[6:0]	7	RW		0	0	0	0	0	0	0	RESERVE
	REFOUTEN	1	RW	1								REFOUT circuit enable * 1: Enable 0: Disable
0E	XOSC_SEL[4:0]	5	RW		1	1	1	1	1			Crystal oscillator drive current setting register, 1 LSB = 25 μ A (Max: 775 μ A). The crystal oscillator is stopped and external clock input is available by setting 5'b0_0000. * Initial value: 5'b1_1111 (775 μ A)
	RESERVE[1:0]	2	RW							0	0	RESERVE
0F	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
10	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
	PS_EN	1	RW	0								Power save setting 0: Reception (Normal status) 1: Powe saving
11	PS_XOSC_EN	1	RW		0							Crystal oscillator operating setting when PS_EN = H 0: Stop crystal oscillation 1: Continuos oscillation
	RESERVE[5:0]	6	RW			0	0	0	0	0	0	RESERVE
	LNASW	1	RW	0								Internal LNA setting 0: Internal LNA ON 1: LNA bypassed
	LNA_IADJ	1	RW		0							Test register
	IT_MODE	1	RW			1						Test register
	RFREG_VADJ[1:0]	2	RW				0	0				Test register
12	LNA_EN	1	RW						1			Enabler of LNA circuit 0: LNA Disable 1: LNA Enable
	RFVGA_EN	1	RW							1		Enabler of RFVGA circuit. 0: RFVGA Disable 1: RFVGA Enable
	RFREG_EN	1	RW								1	Enabler of regulator for RF circuits. 0: RFREG Disable 1: RFREG Enable
13	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
14	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE

Sub	Begister nome	Bit	RW			Bi	it po	sitio	on			Description
address	Register name	ы	RVV	7	6	5	4	3	2	1	0	Description
	BBTEST_EN[1:0]	2	RW	0	0							Test register
15	MIX_EN	1	RW			1						Enabler of Mixer circuits. 0: Mixer Disable 1: Mixer Enable
	RESERVE[4:0]	5	RW				0	0	0	0	0	RESERVE
	OUT_EN_MODE	1	RW	0								Output mute setting during LPF calibration 0: Mute after power up only 1: Mute while every calibration sequence.
16	BB_EN	1	RW		1							Enabler of Base band circuits 0: Disable 1: Enable
	RESERVE[5:0]	6	RW			0	0	0	0	0	0	RESERVE
17	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
18	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
19	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
1A	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
	FRAC_MODE	1	RW	0								Test register
	ORDER	1	RW		1							Test register
1B	ACC_RST	1	RW			0						Test register
	DITHER_EN	1	RW				1					Test register
	RESERVE[3:0]	4	RW					0	0	0	0	RESERVE
	CP_I_CAL_EN	1	RW	1								Test register
1C	VCO_CAL_EN	1	RW		1							Test register
	RESERVE[5:0]	6	RW			0	0	0	0	0	0	RESERVE
1D	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
1E	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
15	PFD_EN	1	RW	1								Test register
1F	PFD_TUP	1	RW		0							Test register
	PFD_TDN	1	RW			0						Test register
1F	PFD_MODE[1:0]	2	RW				0	0				Test register
	RESERVE[2:0]	3	RW						0	0	0	RESERVE
	ODBUF_EN[1:0]	2	RW	0	0							Test register
	MONI_EN	1	RW			0						Test register
	CLK_SRC_DIV_EN	1	RW				1					Test register
20	DSM_CLK_EN	1	RW					1				Test register
	DSM_CLK_REF_SEL	1	RW						1			Test register
	RESERVE[1:0]	2	RW							0	0	RESERVE
21	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
22	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE

Sub	Perioter nome	Bit	RW			Bi	t po	sitio	on			Description
address	Register name	ы	RVV	7	6	5	4	3	2	1	0	Description
	REFOUT_BUF_CURR	2	RW	0	0							Driving current setting of REFOUT 11: 1.25 mA 10: 750 μA 01: 500 μA *00 : 1 mA
23	REFOUT_AMP_ZL	2	RW			0	0					Load register setting of REFOUT 11: 1.12 kΩ 10: 1.25 kΩ 01: 1.75 kΩ * 00:1.5 kΩ
	REFOUT_AMP_CURR	2	RW					0	0			Current setting for REFOUT amplifier circuit 11: 900 μA 10: 700 μA 01: 300 μA 00: 500 μA
	RESERVE[1:0]	2	RW							0	0	RESER∀E
	DIV_RST	1	RW	0								Test register
24	CP_EN	1	RW		1							Test register
	RESERVE[5:0]	6	RW			0	0	0	0	0	0	RESERVE
25	CP_I_H[7:0]	8	RW	0	0	1	1	1	1	0	0	Test register
26	CP_I_L[1:0]	2	RW	0	0							
20	RESERVE[5:0]	6	RW			0	0	0	0	0	0	RESERVE
	IREF_EN	1	RW	1								PLL block and crystal oscillator circuit reference current source enable. The crystal oscillator circuit is stopped by setting this to disable. * 1: Enable 0: Disable
27	CPDA_OUT_EN	1	RW		0							Test register
	CP_AMP_EN	1	RW			1						Test register
	R2_BANK[1:0]	2	RW				0	0				Test register
	C2_BANK[1:0]	2	RW						0	0		Test register
	RESERVE	1	RW								0	RESERVE
	VCO_M_EN	1	RW	0								Test register
	VCO_L_EN	1	RW		1							Test register
28	VCO_CSW[4:0]	5	RW			1	1	1	1	1		Test register
	RESERVE	1	RW								0	RESERVE
	VCO_RSW[3:0]	4	RW	0	1	1	1					Test register Set to initial value
	R2_RANGE	1	RW					0				Test register
29	DIV_BIAS[1:0]	2	RW						0	0		Test register
	MDIV_EN	1	RW								1	Enabler of circuit between VCO and MIXER * 1: Enable 0: Disable

Sub						Bi	it po	ositio	on			
address	Register name	Bit	RW	7	6	5	4	3	2	1	0	Description
	VCO_BUF_M_EN	1	RW	0								Test register
	VCO_BUF_L_EN	1	RW		1							Test register
	VCOBUF_EN	1	RW			1						Test register
	DMPS_EN	1	RW				1					Enabler of Dual-Modulus divide * 1: Enable 0: Disable
2A	CML2CMOS_EN	1	RW					1				Enabler of buffer circuit of PLL circuit. * 1: Enable 0: Disable
	VCO_FC_CLK_EN	1	RW						0			Test register
	IQGEN_EN	1	RW							1		Enabler of IQ Generator * 1: Enable 0: Disable
	RESERVE	1	RW								1	RESERVE
2B	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
2C	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
	GPIO[1:0]	2	RW	0	0							GPIO output setting 2'b00: GPIO OFF 2'b01: GPIO ON
2D	MONI_SEL[3:0]	4	RW			0	0	0	0			Test register * Initial value: 4'd0
	RESERVE[1:0]	2	RW							0	0	RESERVE
2E	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
2F	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
	RST_L_DTCT	1	RW	0								Test register
30	LCK_DTCT_CYCLE[1: 0]	2	RW		0	0						Test register
30	UNLCK_DTCT_CYCL E[1:0]	2	RW				0	0				Test register
	RESERVE[2:0]	3	RW						0	0	0	RESERVE
	FREQCTR_START	1	RW	0								Test register
31	FC_CLK_DIV_TEST[1: 0]	2	RW		0	0						Test register
	RESERVE[4:0]	5	RW				0	0	0	0	0	RESERVE
32	FVCO_H[7:0]	8	RW	0	1	0	0	0	1	0	0	Tost register
33	FVCO_L[4:0]	5	RW	1	1	0	0	0				Test register
	RESERVE[2:0]	3	RW						0	0	0	RESERVE
34	KC0[7:0]	8	RW	0	0	0	0	1	0	1	0	CP current automatic calculation parameter. Normally use the initial value. * Initial value: 8'd10
35	KC1[7:0]	8	RW	0	0	0	1	1	1	1	0	CP current automatic calculation parameter. Normally use the initial value. * Initial value: 8'd30
36	KBW[7:0]	8	RW	0	1	1	1	1	0	0	0	CP current automatic calculation parameter. Normally use the initial value. * Initial value: 8'd120

Sub	Register name	Bit	RW			Bi	t po	sitio	on			Description
address	Register name	Dit		7	6	5	4	3	2	1	0	Description
	LPF_ADJ_EN	1	RW	1								LPF calibration enabler 0: Calibration disable 1: Normal condition(Using calibration)
37	LPFADJ_TG_FREQ[5: 0]	6	RW		0	0	0	0	1	1		LPF cutoff frequency setting (MHz) Set in binary. Valid range is d5 to d36 d37 to d62 is forbidden. d63 set the maximum cutoff frequency.
	LPFADJ_MANUAL_E N	1	RW								0	Test register
38	LPFADJ_MANUAL[7:0]	8	RW	0	0	0	0	0	0	0	0	Test register
39	LPF_CTL[7:0]	8	R	0	0	0	0	0	0	0	0	Test register
ЗA	FREQ_CTR_H[7:0]	8	R	0	0	0	0	0	0	0	0	Test register
	FREQ_CTR_L[4:0]	5	R	0	0	0	0	0				
3B	VCO_CAL_ERR	1	R						0			VCO calibration error flag * 0: — 1: Error
	RESERVE[1:0]	2	RW							0	0	RESERVE
	CAL_FVCO_ENX	1	RW	0								Test register
3C	TEST_SEL[3:0]	4	RW		0	0	0	0				Test register
	RESERVE[2:0]	3	RW						0	0	0	RESERVE
	CLK1M_SILENT_EN	1	RW	0								Test register
3D	VCO_CLK_REF_SEL	1	RW		0							Test register
	RESERVE[5:0]	6	RW			0	0	0	0	0	0	RESERVE
7E	EXTRA1[7:0]	8	RW	0	0	0	0	0	0	0	0	Test register
7F	VER[3:0]	4	R	0	1	1	1					IC version indication
	CHIP_TYPE[3:0]	4	R					0	0	0	1	IC internal chip version indication

Please write the initial value when you need to write the test registers due to burst write.

Tuning Procedure

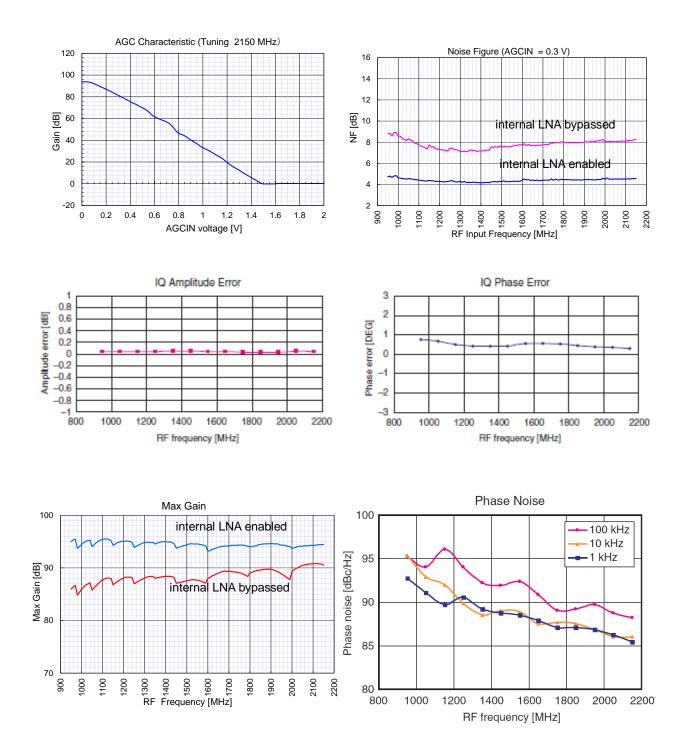
Main Counter and Swallow Counter Settings

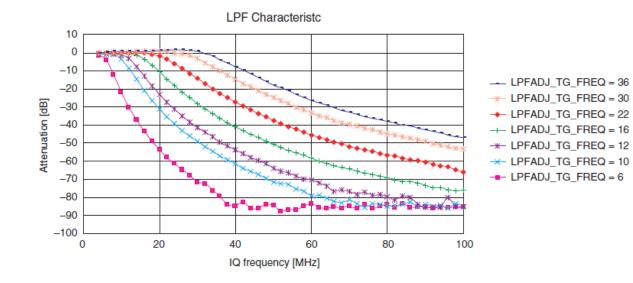
The tuning frequency is obtained by the following formulas.

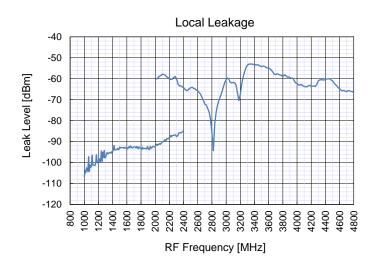
$$\label{eq:rescaled} \begin{split} \mathsf{RF} &= \mathsf{fosc}/4 = \mathsf{1}/2 \ \times \ \mathsf{(8P+S)} \\ \mathsf{RF} &= \mathsf{fosc}/2 = \mathsf{fref} \ \times \ (\mathsf{8P+S}) \\ \end{split} \tag{950 &\leq \mathsf{RF} < \mathsf{1155} \ \mathsf{MHz}) \\ \mathsf{MDIV}_SW &= \mathsf{1'b1} \\ \mathsf{MDIV}_SW &= \mathsf{1'b1} \\ \mathsf{MDIV}_SW &= \mathsf{1'b1} \\ \mathsf{MDIV}_SW &= \mathsf{1'b1} \\ \end{split}$$

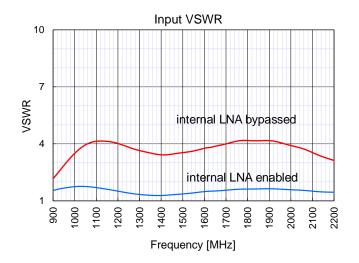
RF : Tuning frequency

fosc : Oscillation frequency of VCO circuit

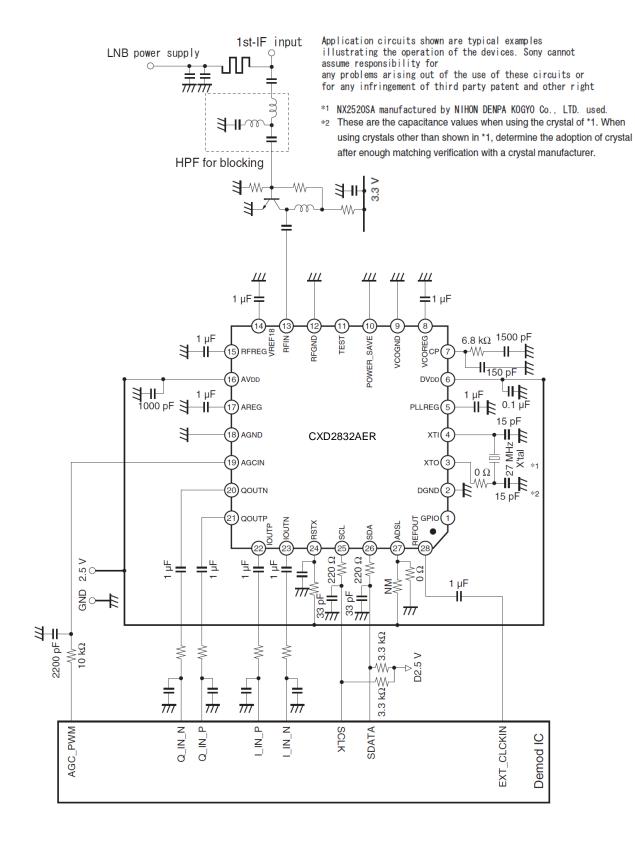

fref : Reference frequency

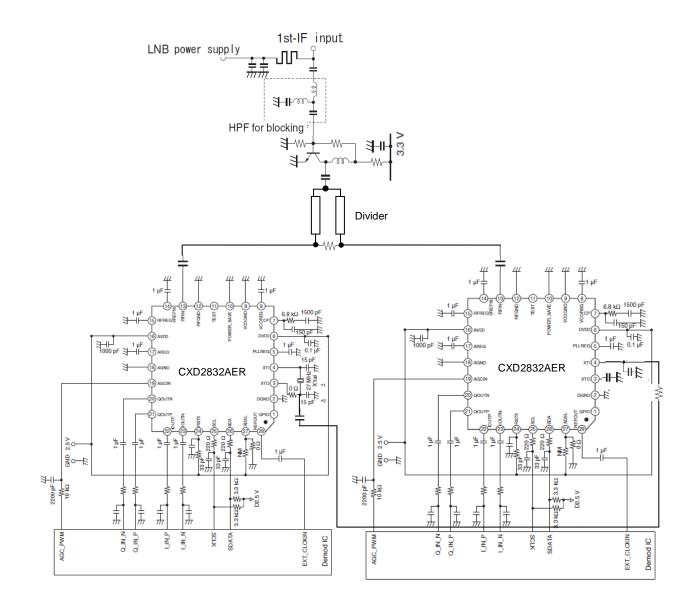

 REF_R should be the value which satisfy the equation below


(crystal oscillation frequency) / REF_R = 1 MHz


- P : Main counter frequency division ratio
- S : Swallow counter frequency division ratio

Example of Representative Characteristics

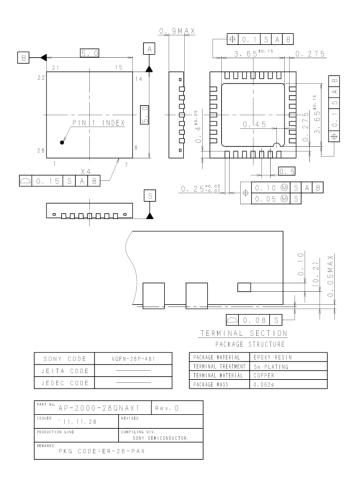




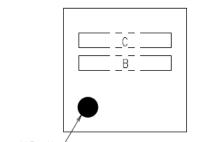
Application Circuit

Application for Single tuner

Application for double tuner


In case of using two or more the CXD2832AER simultaneously, please be careful also of a pattern layout or a shield so that degradation of the receiving performance by interference does not occur.

Please contact our sales member if you plan to use 3 or more the CXD2832AER in connection.


Package outline

(Unit :mm)

28PIN VQFN (PLASTIC)

Marking

	MARKING	С:	D2832A				
<	INSTRUCTION	IS >					
1)	TYPE NO.	(MAX 7	CHARACTERS)	IN SECTIO	N C.		
	(FOR MOR	E THAN	7 CHARACTERS	FOLLOW R	ULES FOR	ABBREVIAT	IONS.)
2)	LOT NO. (MAX 7	CHARACTERS)	IN SECTI	ON B.		

PIN 1 INDEX /