

Process B1 N-Channel Power MOSFET

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-220 (Case 37)

FMP18N05

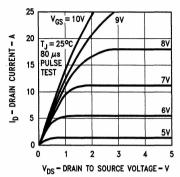
FMP20N05

FMP18N06

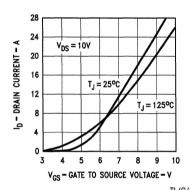
FMP20N06

TL/G/10040-40

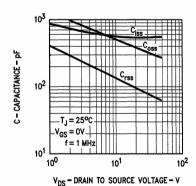
Electrical Characteristics T_C = 25°C (unless otherwise noted)

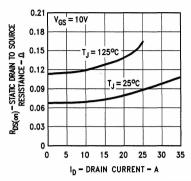

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_D = 250 \mu\text{A}; V_{GS} = 0\text{V}$	50		٧
I _{DSS}	Zero Gate Voltage Drain	V _{DS} = Rated Voltage V _{GS} = 0V		250	μΑ
I _{GSS}	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_D = 250 \mu\text{A}; V_{DS} = V_{GS}$	2.0	4.0	٧
R _{DS(ON)}	Static On-Resistance (Note 2)	V _{GS} = 10V; I _D = 10A		0.085	Ω
9FS	Forward Transconductance	$V_{DS} = 10V; I_{D} = 10A$	5		Siemens
C _{iss}	Input Capacitance	$V_{DS} = 25V; V_{GS} = 0V$ f = 1 MHz		850	pF
C _{oss}	Output Capacitance			400	pF
C _{rss}	Reverse Transfer			150	pF
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 40V; I_{D} = 10A$ $V_{GS} = 10V; R_{GEN} = 50\Omega$		50	ns
t _r	Rise Time	$R_{GS} = 50\Omega$		90	ns
t _{d(off)}	Turn-Off Delay Time			60	ns
t _f	Fall Time			75	ns
Qg	Total Gate Charge	V _{GS} = 10V; I _D = 25A V _{DD} = 40V		20	nC

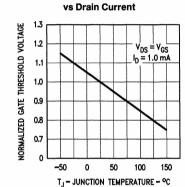
Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

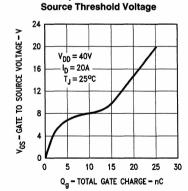

Note 2: Pulse Test: Pulse Width \leq 80 μ s, Duty Cycle \leq 1%.

Process B1

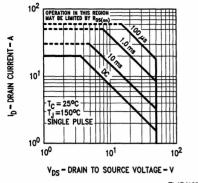

Typical Performance Characteristics

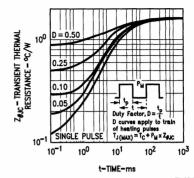

TL/G/10040-41 **FIGURE 1. Output Characteristics**


TL/G/10040-43 **FIGURE 3. Transfer Characteristics**


TL/G/10040-45 FIGURE 5. Capacitance vs Drain to Source Voltage

TL/G/10040-42 FIGURE 2. Static Drain to Source Resistance


TL/G/10040-44 FIGURE 4. Temperature Variation of Gate to


TL/G/10040-46 FIGURE 6. Gate to Source Voltage vs Total Gate Charge

Process B1

Typical Performance Characteristics (Continued)

TL/G/10040-4
FIGURE 7. Forward Biased Safe Operating Area

TL/G/10040-48 FIGURE 8. Transient Thermal Resistance vs Time

Typical Electrical Characteristics

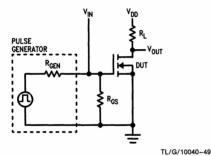


FIGURE 9. Switching Test Circuit

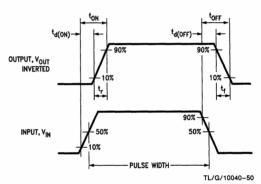


FIGURE 10. Switching Waveforms