DJ-191

Service Manual

CONTENTS

	2
• SEMICONDUCTOR DATA ······	9
	15
PARTS LIST	
	21
	26
	41

SPECIFICATIONS

FrequencyCoverage DJ-191T (US Amateur version) **IX** 144000~147995MHz 135000 .173-995MHz DJ-191E (European Anateur version) 144000 9911z 144 000 ~ 145 995MHz 149 155000MHz 135 000 173-995MHz DJ-191TA1 (Commercial versionVHFL) 135 000 DJ-191TA2(Commercial version VHFH) 150 000 173995Mz 135 000 1.73-995MHz 5 10 125 15 20 25,30kHz steps Channel Step. 40 Ch annes + C llaCh annte Memory Channels: emory Antenna Impedance: 50Ω unbalanced **Frequency Stability:** $\pm 5 \text{ ppm}$ Microphone Input Impedance: $2k\Omega$ nominal. Signal Type: F3E (FM) **Offset Range:** $0 \sim 99.995 MHz$ **Deviation:** \pm 5kHz max. TX Output (supply voltage): 1.5W (4.8V) / 3.5W (7.2V) / 5W (9.6~13.8V) **RX Sensitivity:** 12dB SINAD better than $-16dB_{\mu}$ **RX Selectivity:** -6dB/ \pm 12kHz I.F.: (1st) 21.25MHz / (2nd) 450kHz 4.8~13.8V DC (4.8V DC standard) Power Supply Requirements: Transmitting: Approx. 1.2 Amp. in High Power **Current Consumption** at 13.8V DC: Setting Receiving: Squelched Approx. 24mA (BS on) $-10 \sim +60^{\circ}$ C. $14 \sim 140^{\circ}$ F **Operating Temperature:** 57(W) × 151(H) × 28(D) mm Dimensions: (with EBP-37N without projections) $2^{1}/_{4}(W) \times 6(H) \times 1^{1}/_{16}(D)$ inches Weight: Approx. 300g DTMF: 16 Button Keypad, encoder/decoder installed Subaudible Tones (CTCSS): Encoder installed (50 tones)

CIRCUIT DESCRIPTION

1) Receiver System

The receiver system is a double superheterodyne system with a 21.7 MHz first IF and a 450 kHz second IF.

1. Front End

The received signal at any frequency in the 130.00- to 173.995-MHz range is passed through the low-pass filter (L102, L103, L104, C113, C107, C116, and C114) and tuning circuit (L112 and D107), and amplified by the RF amplifier (Q107). The signal from Q107 is then passed through the tuning circuit (L109, L110, L111, and varicaps D104, D105 and D106) and converted into 21.7 MHz by the mixer (Q106). The tuning circuit, which consists of L112, L109, varicaps D107 and D104, L110, L111, varicaps D105 and D106, is controlled by the tracking voltage from the CPU so that it is optimized for the reception frequency. The local signal from the VCO is passed through the buffer (Q108), and supplied to the source of the mixer (Q106). The radio uses the lower side of the superheterodyne system.

2. IF Circuit

The mixer mixes the received signal with the local signal to obtain the sum of and difference between them. The crystal filter (XF101, XF102) selects 21.7 MHz frequency from the results and eliminates the signals of the unwanted frequencies. The first IF amplifier (Q105) then amplifies the signal of the selected frequency.

3. Demodulator Circuit

After the signal is amplified by the first IF amplifier (Q105), it is input to pin 16 of the demodulator IC (IC104). The second local signal of 21.25 MHz (shared with PLL IC reference oscillation), which is oscillated by the internal oscillation circuit in IC102 and crystal (X101), is input through pin 1 of IC104. Then, these two signals are mixed by the internal mixer in IC104 and the result is converted into the second IF signal with a frequency of 450 kHz. The second IF signal is output from pin 3 of IC104 to the ceramic filter (FL101), where the unwanted frequency band of that signal is eliminated, and the resulting signal is sent back to the IC104 through pins 5 and 7.

The second IF signal input via pin 7 is demodulated by the internal limiter amplifier and quadrature detection circuit in IC104, and output as an audio signal through pin 9.

4. Audio Circuit

The audio signal from pin 9 of IC104 is compensated to the audio frequency characteristics in the de-emphasis circuit (R162, R161, C172, C173) and amplified by the AF amplifier (Q109). The signal is then input to pin 2 of the electronic volume (IC103) for volume adjustment, and output from pin 1. The adjusted signal is sent to the audio power amplifier (IC105) through pin 2 to drive the speaker.

5. Squelch Circuit

Part of the audio signal from pin 9 of IC104 is amplified by the noise filter amplifier consisting of R176, R186, R177, C179, C183, C191, and C194, and the internal noise amplifier in IC104. The desired noise of the signal is output through pin 11 of IC104, to be further amplified by the noise amplifier (Q115). The amplified noise signal is rectified by voltage doubler D109 and input to pin 4 of CPU (IC5).

2) Transmitter System

1. Modulator Circuit

The audio signal is converted to an electric signal in either the internai or external microphone, and input to the microphone amplifier (IC6). IC6 consists of two operational amplifiers; one amplifier (pins 1, 2, and 3) is composed of pre-emphasis and IDC circuits and the other (pins 5, 6, and 7) is composed of a splatter filter. The maximum frequency deviation is obtained by VR2 and input to the cathode of the varicap of the VCO, to change the electric capacity in the oscillation circuit. This produces the frequency modulation.

2. Power Amplifier Circuit

The transmitted signal is oscillated by the VCO, amplified by the pre-drive amplifier (Q102) and drive amplifier (Q101), and input to the power module (IC101). The signal is then amplified by the power module (IC101) and led to the antenna switch (D101) and low-pass filter (L102, L103, L104, C113, C107, C116, and C114), where unwanted high harmonic waves are reduced as needed, and the resulting signal is supplied to the antenna.

3. APC Circuit

Part of the transmission power from the low-pass filter is detected by D103, converted to DC, and then amplified by a differential amplifier. The output voltage controls the bias voltage from pin 2 of the power module (IC101) to maintain the transmission power constant.

3) PLL Synthesizer Circuit 1. PLL The

The dividing ratio is obtained by sending data from the CPU (IC5) to pin 2 and sending clock puises to pin 3 of the PLL IC (IC102). The oscillated signal from the VCO is amplified by the buffer (Q117) and input to pin 6 of IC102. Each programmable divider in IC102 divides the frequency of the input signal by N according to the frequency data, to generate a comparison frequency of 5 or 6.25 kHz.

2. Reference Frequency Circuit

The reference frequency appropriate for the channel steps is obtained by dividing the 21.25 MHz reference oscillation (X101) by 4250 or 3400, according to the data from the CPU (IC5). When the resulting frequency is 5 kHz, channel steps of 5, 10, 15, 20, 25, 30, and 50 kHz are used. When it is 6.25 kHz, the 12.5 kHz channel step is used.

- 3. Phase Comparator Circuit The PLL (IC102) uses the reference frequency, 5 or 6.25 kHz. The phase comparator in the IC102 compares the phase of the frequency from the VCO with that of the comparison frequency, 5 or 6.25 kHz, which is obtained by the internal divider in IC102.
- 4. PLL Loop Filter Circuit If a phase difference is found in the phase comparison between the reference frequency and VCO output frequency, the charge pump output (pin 8) of IC102 generates a pulse signal, which is converted to DC voltage by the PLL loop filter and input to the varicap of the VCO unit for oscillation frequency control.
- 5. VCO Circuit A Colpitts oscillation circuit driven by Q301 directly oscillates the desired frequency. The frequency control voltage determined in the CPU (IC5) and PLL circuit is input to the varicaps (D301 and D304). This changes the oscillation frequency, which is amplified by the VCO buffer (Q302) and output from the VCO unit.

Note

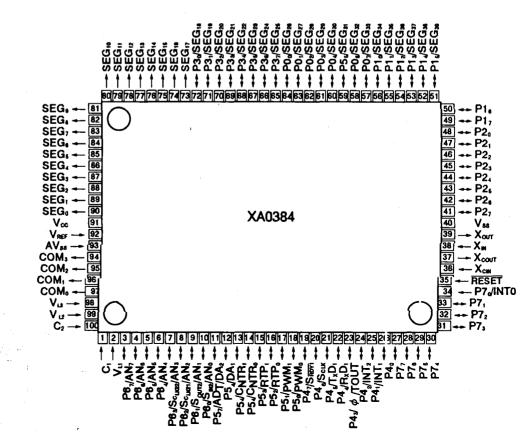
The oscillation frequency is determined by turning Q301 ON and OFF.

Displayed frequencies	Q301
TX: 130.00 - 139.995 MHz	055
RX: 130.00 - 161.695 MHz	OFF
TX: 140.00 - 173.995 MHz	
RX: 161.70 - 173.995 MHz	ON

4) CPU and Peripheral Circuits

1. LCD Display Circuit

The CPU turns ON the LCD via segment and common terminals with 1/3 the duty and 1/3 the bias, at the frame frequency is 85Hz.


2. Display Lamp Circuit When the LAMP key is pressed, "H" is output from pin 45 of CPU (IC5) to the bases of Q1 and Q12. Q1 and Q12 then turn ON and the LEDs (D1, D3, D14, D15, D16, and D17) light.

3. Reset and Backup Circuits

When the power from the DC jack or external battery increases from 0 V to 2.5 or more, "H" level reset signal is output from the reset IC (IC2) to pin 35 of the CPU (IC5), causing the CPU to reset. The reset signal, however, waits at C6 and R1010, and does not enter the CPU until the CPU clock (X1) has stablized. When the external power drops to 3.2 V or below, the output signal from the backup IC (IC3), which has been input to pin 34 of the CPU, changes from "H" to "L" level. The CPU will then be in the backup state.

- 4. S(Signal)Meter Circuit The DC potential of pin 13 of IC104 is input to pin 3 of the CPU (IC5), converted from an analog to a digital signal, and displayed as the S-meter signal on the LCD.
- 5. DTMF Encoder The CPU (IC5) is equipped with an internal DTMF encoder. The DTMF signal is output from pin 12, through R90 and R91 (for level adjustment), and then through the microphone amplifier (IC6), and is sent to the varicap of the VCO for modulation. At the same time, the monitoring tone passes through the AF circuit and is output from the speaker.
- 6. DTMF Decoder Part of the audio signal demodulated by IC104 is input to pin 1 of DTMF IC (IC8). The internal signal judging circuit in IC 8 then checks if the signal is valid or invalid. The judged signal is converted into a 4-bit code and sent to pin 29 of IC5.
- 7. Tone Encoder The CPU (IC5) is equipped with an internal tone encoder. The tone signal (67.0 to 254.1 Hz) is output from pin 11 of the CPU to the varicap of the VCO for modulation.

5) CPU Terminal Functions: M38267M8L (XA0384)

No.	Pin Name	Signal	I/O	Logic	Description
1	C1	C1	-	_	-
2	VL1	VL1	1	A/D	LCD power supply
3	P67/AN7	SMT	1	A/D	S-meter input
4	P66/AN6	SQL	t ī	A/D	Noise level input for squelch
5	P65/AN5	BAT	1	A/D	Low battery detection input
6	P64/AN4	BP5	1	A/D	Band plan 5
7	P63/CLK22/AN3	BP4	1		Band plan 4
8	P62/CLK21/AN2	UL	I	Active high	PLL unlock signal input
9	P61/SOUT2/AN1	BP1,2		A/D	Band plans 1 and 2
10	P60/SIN2/AN0	MONI	1	Active low	Monitor key input
11	P57/ADT/DA2	стоит	0	D/A	CTCSS tone output
12	P56/AD1	DTOUT	<u> </u>	D/A	DTMF output
13	P55/CNTR1	TSQD		Active low	CTCSS tone detection input/Trunking board detection
14	P54/CNTR0	BEP	0	Pulse	Beep tone output/Band plan 3
15	P53/RTP1	STB2	1/0	Active low/pulse	CTCSS unit detection/Strobe signal to CTCSS unit/Strobe signal to trunking board/Audio line control
16	P52/RTP0	MUTE	1/0	Active high	Microphone mute/Bank change input while trunking
17	P51/PWM1	CLK	0	Pulse	Serial clock output for PLL, CTCSS, and trunking board
18	P50/PWM0	DATA	0	Pulse	Serial data output for PLL, CTCSS, and trunking board
19	P47/SRDY1	ACK	1/0	Pulse	Clock output for DTMF shift out/Band plan 6
20	P46/SCLK1	STB1	0	Pulse	Strobe for PLL IC
21	P45/TXD1	UTX	0	Pulse	UART data transmission output
22	P44/RXD1	URX	Ĭ	Pulse	UART data reception input
23	P43/ø/TOUT	TBST	0	Pulse	Tone burst (1750Hz) output (European version)
24	P42/INT2	RE2		Active low	
25	P41/INT1	RE1	$\frac{1}{1}$	Active low	Rotary encoder input
23 26	P40	ΡΤΤ		Active high	PTT input
27	P77	DSW	0	Active low	DTMF IC ON/OFF
28	P76	STD	1/0	Active high	DTMF signal detection input during reception/Deviation adjustment during transmission
29	P75	DSD	1	Pulse	Decoded DTMF serial data input during reception/Deviation adjustment during transmission
30	P74	T3C	0	Active low	TX power ON/OFF output
31	P73	P3C	0	Active low	PLL power ON/OFF output
32	P72	AFP	0	Active low	AFAMP power ON/OFF output
33	P71	R3C	0	Active low	RX power ON/OFF output
34	P70/INTO	BU		Active low	Backup signal detection input
35	RESET	RST	1	Active low	Reset input
36	XCIN	XCIN	-		
30	XCOUNT	XCOUT	-		_
37	XIN	XIN	-	-	- Main clock input
30 39	XOUT	XOUT	- 	-	Main clock input
	VSS	GND	·· -	-	CPU ground
40 41	VSS P27	PSW	-		Power switch input
	P27 P26	SCL	0	Active low Pulse	Serial clock for EEPROM
42 43	P26 P25	C3C	0	Active high	C3 power ON/OFF output
43	P23 P24	SDA	0	Pulse	Serial data for EEPROM
	P24 P23	LMP	0	Active high	Lamp ON/OFF
45 46	P23 P22	T/KEY		Active high	Tone burst/LPTT input
46 47	P22 P21	KO0	1/0		Key matrix output/Band plan BP7 input
48	P20	K01	0	_	
40	P17	K02	0	_	Key matrix output
4 9 50	P16	K02	0		
30	FIU	1.03			

No.	Pin Name	Signal	I/O	Logic	Description
51	P15/SEG39	F/KEY		Active low	Function key input
52	P14/SEG38	K10	1	-	
53	P13/SEG37	K11	1	-	1
54	P12/SEG36	K12	I	_	Key matrix input
55	P11/SEG35	K13	1		
56	P10/SEG34	K14	1		
57	P07/SEG33	SFT	0	_	VCO frequency range change
58	P06/SEG32	SD	0	Active low	Signal detection output
59	P05/SEG31	AFC	0	Active high	AF tone control output
60	P04/SEG30	DA4	0		
61	P03/SEG29	DA3	0	_	
62	P02/SEG28	DA2	0	_	DA converter for electronic volume and output power
63	P01/SEG27	DA1	0		
64	P00/SEG26	DAO	0		
65	P37/SEG25	S25	0	_	
66	P36/SEG24	S24	0		
67	P35/SEG23	S23	0		
68	P34/SEG22	S22	0		
69	P33/SEG21	S21	0	_	
70	P32/SEG20	S20	0	 _	
71	P31/SEG19	S19	0		
72	P30/SEG18	S18	0		
72	SEG17	S17	0		
73	SEG16	S16	0		
74	SEG15	S15	0		
76	SEG14	S13	0		
70	SEG13	S14	0	_	
78	SEG12	S12	0		LCD segment signal
78	SEG12 SEG11	S12	0		
80	SEG10	S10	0		
81	SEG9	S10	0		4
82	SEG8	S8	0	-	
o∠ 83	SEG7	50 S7	0		
84	SEG7	57 S6	0		4
85	SEG6 SEG5	50 S5	0		4
86	SEG5 SEG4	55 S4	0	-	
87	SEG4	54 S3	0		
	SEG3	53 S2	0	-	
88	SEG2	52 S1	0		
89			0	-	4
90	SEG0	S0			CPU power torminal
91	VCC	VDD	-	-	CPU power terminal
92	VREF	AVSS		-	AD converter power supply
93	AVSS COM3		-	-	AD converter ground
94		COM3			
95	COM2	COM2	0	-	LCD COM2 output
96		COM1	0	-	
97	COMO	COMO	0	r -	
98	VL3	VL3		-	LCD power supply
99	VL2	VL2		-	LCD power supply
100	C2	I	-	-	-

ADJUSTMENT

1) Required Test Equipment

The following items are required to adjust radio parameters:

- 1. Regulated power supply
- 2. Digital multimeter
- 3. Oscilloscope
- 4. Audio dummy load
- 5. SSG
- 6. Spectrum Analyzer
- 7. Power meter
- 8. Audio volmeter
- 9. Audio generator
- 10. Distortion meter /SINAD meter
- 11. Frequency counter
- 12. Linear detector

Note

- Standard modulation:
- Reference sensitivity:
- \blacksquare Specified audio output level: 200 mW at 8 Ω
- \blacksquare Standard audio output level: 50 mW at 8 Ω
- Use an RF cable (3D2W: 1 m) for test equipment.
- Attach a fuse to the RF test equipment.
- All SSG outputs are indicated by EMF.
- Supply voltage for the transceiver: 13.8 VDC

Supply voltage: Current:

Voltage range: Current: Input resistance:

Measurable frequency:

Impedance: Dissipation: Jack:

Output frequency: Output level: Modulation:

Measuring range:

Measurable frequency: Impedance: Measuring range:

Measurable frequency: Sensitivity:

Output frequency: Output impedance:

Measurable frequency: Input level: Distortion level:

Measurable frequency: Measurable stability:

Measurable frequency: Characteristics: CN:

1 kHz +/-3.5 kHz/DEV

12 dB SINAD

5 - 14 VDC 3 A or more

FS = Approx. 20 V 10A or more High impedance

Audio frequency

8 Ω 1 W or more 3.5 mm φ

200 MHz or more -20 dB/0.1 μ V - 120dB/1V AM/FM

Up to 2 GHz or more

Up to 200 MHz 50 Ω , unbalanced 0.1 W - 10 W

Up to 100 kHz 1 mV to 10 V

67 Hz to 10 kHz 600 Ω , unbalanced

1 kHz Up to 40 dB 1 % - 100 %

Up to 200 MHz Approx. +/-0.1 ppm

Up to 200 MHz Flat 60 dB or more

2) Adjustment Mode

The DJ - 191 does not require a serviceperson to manipulate the components on the printed - circuit board, except the trimmer when adjusting reference frequency and deviation. Most of the adjustments for the transceiver are made by using the keys on it while the unit is in the adjustment mode. Because the adjustment mode temporarily uses the channels, frequency must be set on each channel before adjustments can be made. For instructions on how to program the channels, see the "DJ - 191 INSTRUCTION MANUAL" which came with the product. In consideration of the radio environment, the frequency on each channel must be near the value (+/ - 1 MHz) listed in the table below. To enter the adjustment mode, turn the power off, hold down both the UP and DOWN keys, and press the POWER key. "chEc" appears on the LCD for about two seconds, and "C" appears indicating the unit is in the adjustment mode.

Channel **Channel function** Frequency 1 Reference frequency adjustment 145 MHz 2 High power adjustment 145 MHz 3 145 MHz Low power adjustment 4 Minimum frequency sensitivity adjustment 130 MHz 5 Medium frequency sensitivity adjustment 145 MHz 6 Maximum frequency sensitivity adjustment 173 MHz 7 S-meter (1) adjustment 145 MHz 8 S-meter (FULL) adjustment 145 MHz 9 Deviation 145 MHz 145 MHz 10 DTMF (1) test 11 DTMF (D) test 145 MHz 145 MHz 12 Tone 67 Hz test Tone 88.5 Hz test 145 MHz 13 Tone 250.3 Hz test 145 MHz 14 Tone burst test 145 MHz 15 Aging (Not required to use) 145 MHz 16 20 VCO frequency shift change (Do not change).

Channel frequencies used in the adjustment mode

Caution

■ Do not press the UP or DOWN key while channel 20 is selected in the adjustment mode. Otherwise, the VCO switch frequency will change, causing a malfunction.

Reference Frequency Adjustment

- 1. In the adjustment mode, select channel 1 by rotating the main tuning dial.
- 2. Press the (PTT,) key to start transmission.
- 3. Rotate TC101 on the RF circuit board until the value on the frequency counter matches the one displayed on the LCD.

High Power Adjustment

- 1. In the adjustment mode, select channel 2 by rotating the main tuning dial.
- 2. Hold down the F key and press the H/L key to enter the high power mode ("L" at the lower-left of the display disappears).
- 3. Hold down the (PTT) key to start transmission.
- 4. While watching the reading of the TX power meter, set the output power to the value closest to 5 W by using the UP and DOWN keys.
- 5. When the PTT key is released, the output power at that time will be stored as the high power setting.

Low Power Adjustment

- 1. In the adjustment mode, select channel 3 by rotating the main tuning dial.
- 2. Hold down the (F) key and press the (H/L) key to enter the low power mode ("L" appears at the lower-left of the display).
- 3. Hold down the (PTT) key to start transmission.
- 4. While watching the reading of the TX power meter, set the output power to the value closest to 0.5 W by using the UP and OOWN keys.
- 5. When the PTT key is released, the output power at that time will be stored as the low power setting.

Minimum Frequency Sensitivity Adjustment

See "Note on Adjusting the Sensitivity" later in this section.

- 1. In the adjustment mode, select channel 4 by rotating the main tuning dial.
- 2. Using the UP and DOWN key, set the minimum frequency sensitivity.

Medium Frequency Sensitivity Adjustment

- See "Note on Adjusting the Sensitivity" later in this section.
- 1. In the adjustment mode, select channel 5 by rotating the main tuning dial.
- 2. Using the <u>UP</u> and <u>DOWN</u> key, set the medium frequency sensitivity.

Maximum Frequency Sensitivity Adjustment

- See "Note on Adjusting the Sensitivity" later in this section.
- 1. In the adjustment mode, select channel 6 by rotating the main tuning dial.
- 2. Using the UP and DOWN key, set the maximum frequency sensitivity.

S-meter (1) Adjustment	 In the adjustment mode, select channel 7 by rotating the main tuning dial. The S-meter will show a single star (★). Enter "0" dB μ (EMF) with the transceiver tester. Press the DOWN key. The transceiver beeps indicating the new setting has been stored successfully.
S-meter (FULL) Adjustment	 In the adjustment mode, select channel 8 by rotating the main tuning dial. The S-meter will show all six stars (★ ★ ★ ★ ★ ★). Enter "+20" dB μ (EMF) with the transceiver tester. Press the DOWN key. The transceiver beeps indicating the new setting has been stored successfully.
Deviation	 In the adjustment mode, select channel 9 by rotating the main tuning dial. Input a 50 mVrms, 1 KMz signal with your transceiver tester through the external microphone jack. With the tester, put the transceiver in the transmission mode. Rotate the VR2 on the printed - circuit board of the transceiver until the deviation is set to 4.5 KHz.
DTMF (1) Test	 This function is only for checking the DTMF code, not adjusting it. In the adjustment mode, select channel 10 by rotating the main tuning dial. Press the PTT key. DTMF code "1" is automatically sent and you will hear the monitoring tone from the speaker. Check the deviation with the transceiver tester.
DTMF (D) Test	 In the adjustment mode, select channel 11 by rotating the main tuning dial. Press the PTT key. DTMF code "D" is automatically sent and you will hear the monitoring tone from the speaker. Check the deviation with the transceiver tester.
Tone 67 Hz Test	 This function is only for checking the tone encoder, not adjusting it. In the adjustment mode, select channel 12 by rotating the main tuning dial. Press the PTT key. A 67 Hz tone is automatically sent. Check the deviation with the transceiver tester.
Tone 88.5 Hz Test	 In the adjustment mode, select channel 13 by rotating the main tuning dial. Press the PTT key. An 88.5 Hz tone is automatically sent. Check the deviation with the transceiver tester.

Tone 250.3 Hz Test

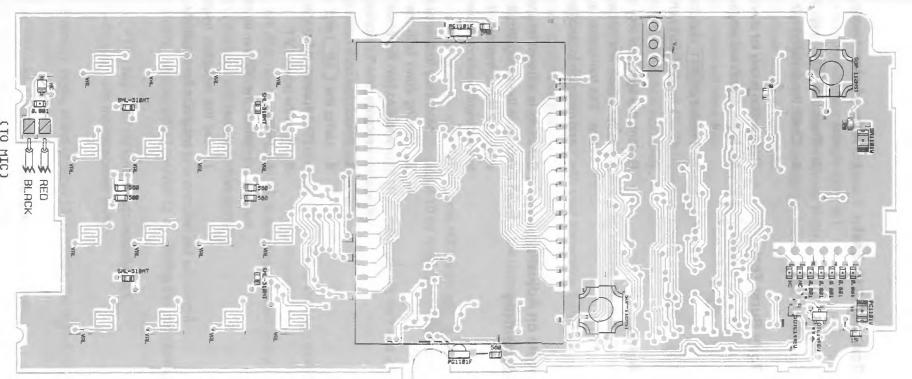
- 1. In the adjustment mode, select channel 14 by rotating the main tuning dial.
- 2. Press the (PTT) key. A 250.3 Hz tone is automatically sent.
- 3. Check the deviation with the transceiver tester.

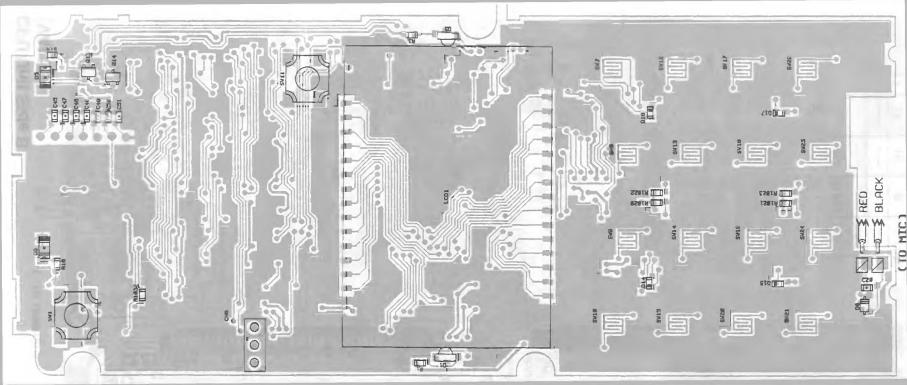
Tone Burst Test

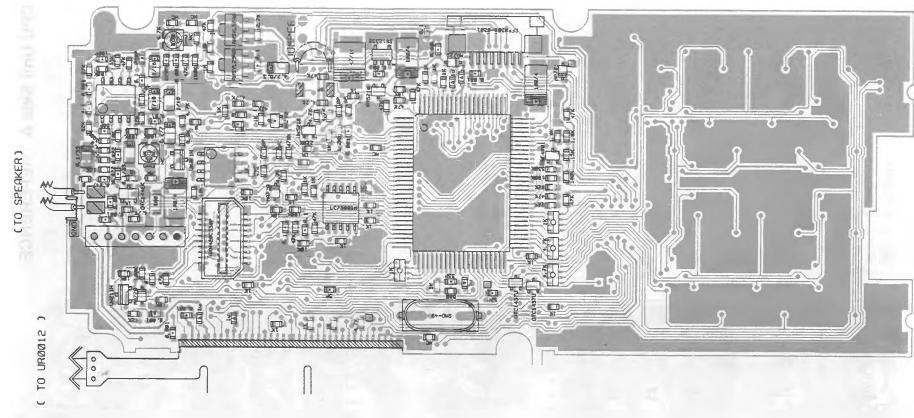
This function is only for checking the tone burst, not adjusting it.

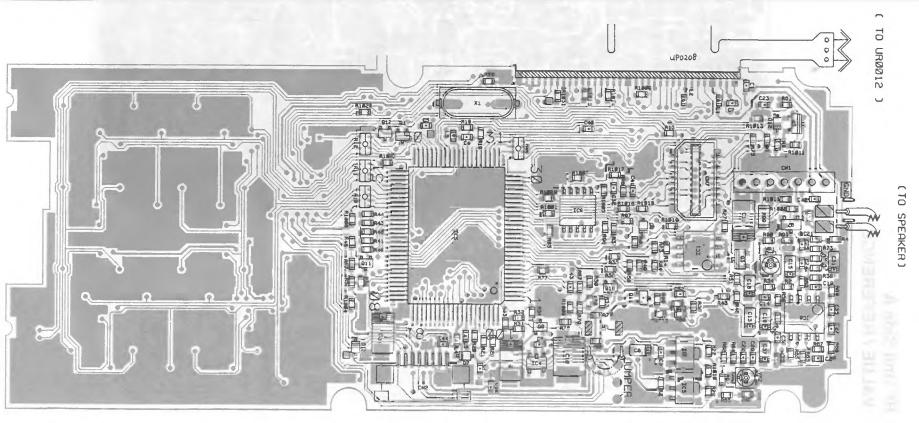
- 1. In the adjustment mode, select channel 15 by rotating the main tuning dial.
- 2. Press the PTT key. A 1750 Hz tone burst is automatically sent.
- 3. Check the deviation with the transceiver tester.

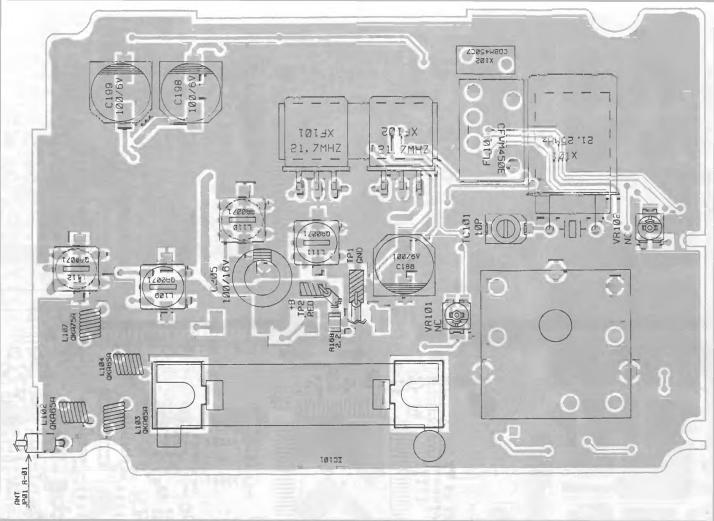
Perform this aging test only when necessary.

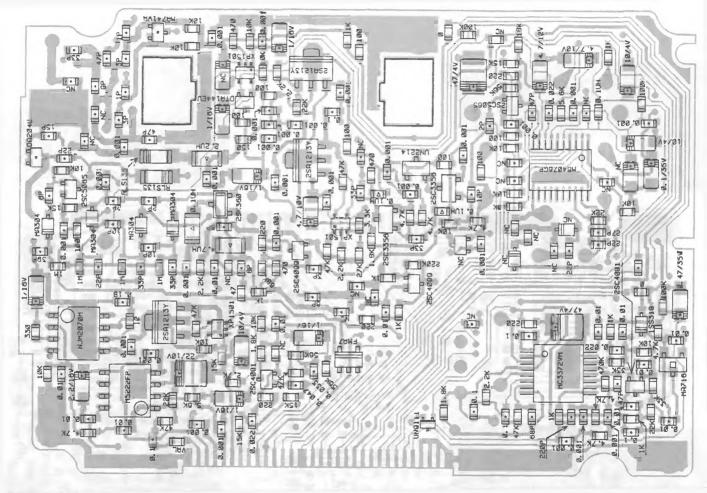

1. In the adjustment mode, select channel 16 by rotating the main tuning dial. The transceiver automatically repeats transmission for a minute and reception for another minute.

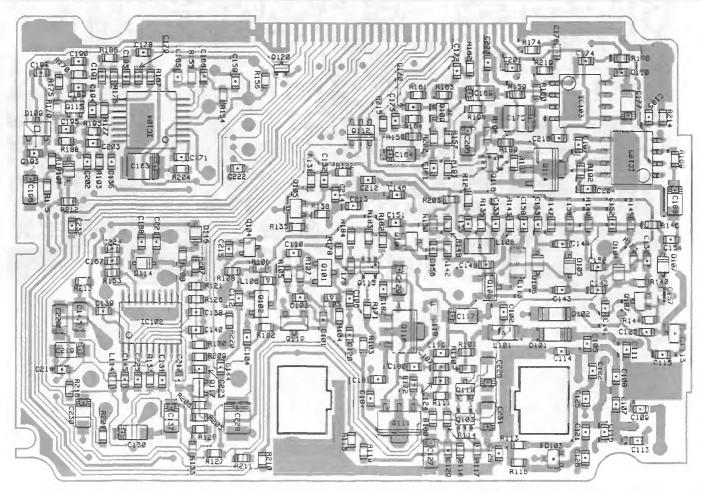

Note on Adjusting Sensitivity

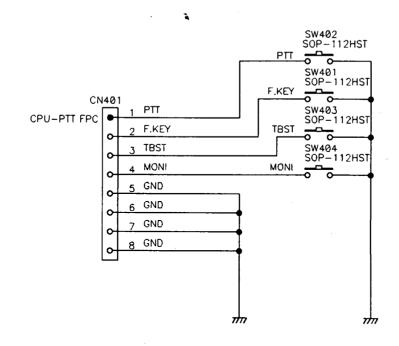

Sensitivity is adjusted by applying the optimum voltage from the CPU to the varicap of the tuning circuit. The coil manipulation for L109, L110, L111, and L112 is not required. If any of the coils is accidentally rotated, return it to the default position as described below, before adjusting the sensitivity.

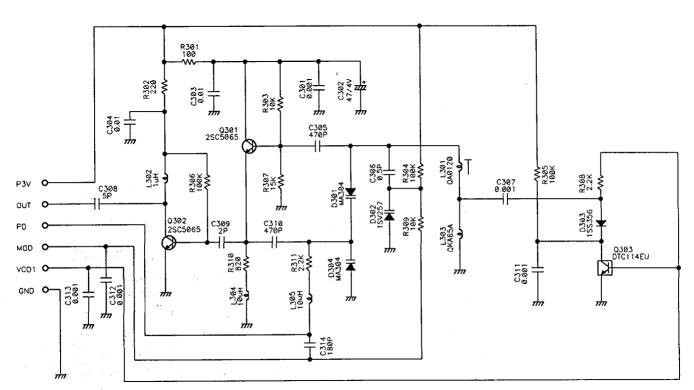

- 1. Program any frequency within 145 MHz +/-1 on memory channel 5.
- 2. Holding down both the UP and DOWN key, press the POWER switch to turn the power ON. "chEc" will appears on the LCD for two seconds, and "C" appears.
- 3. Select channel 5 by rotating the main tuning dial.
- 4. Using the UP and DOWN keys, set the adjustment data to "7F" ("7F" appears in the channel number area on the LCD).
- 5. Turn the power OFF.
- 6. Holding down both the UP and DOWN key, turn the power ON. When the "C" no longer appears, the transceiver is in the normal status.
- 7. Set the reception frequency to 145 MHz +/-1. Rotate the coil to maximize the sensitivity.

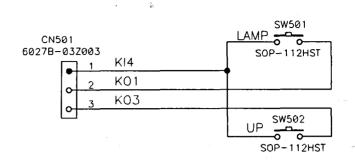

Aging

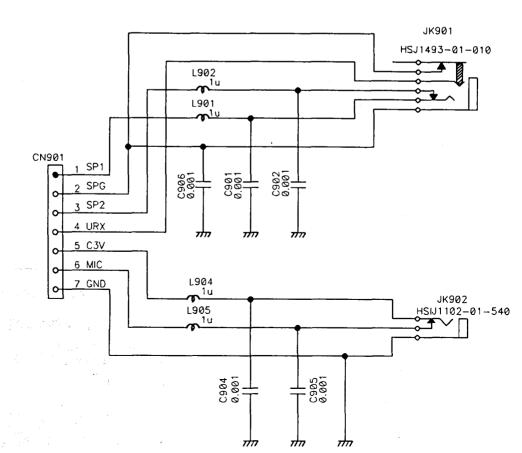


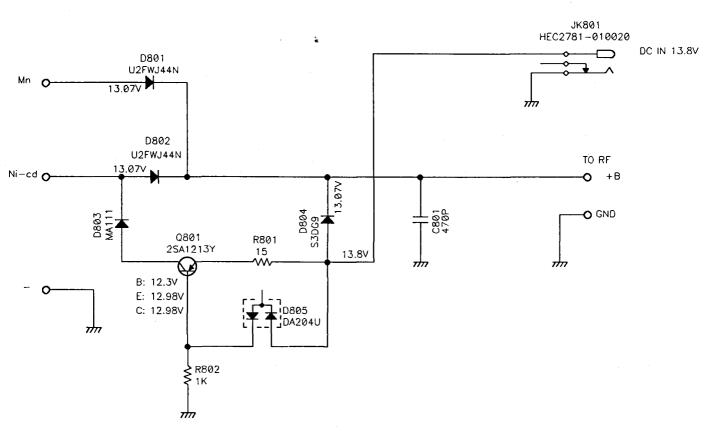


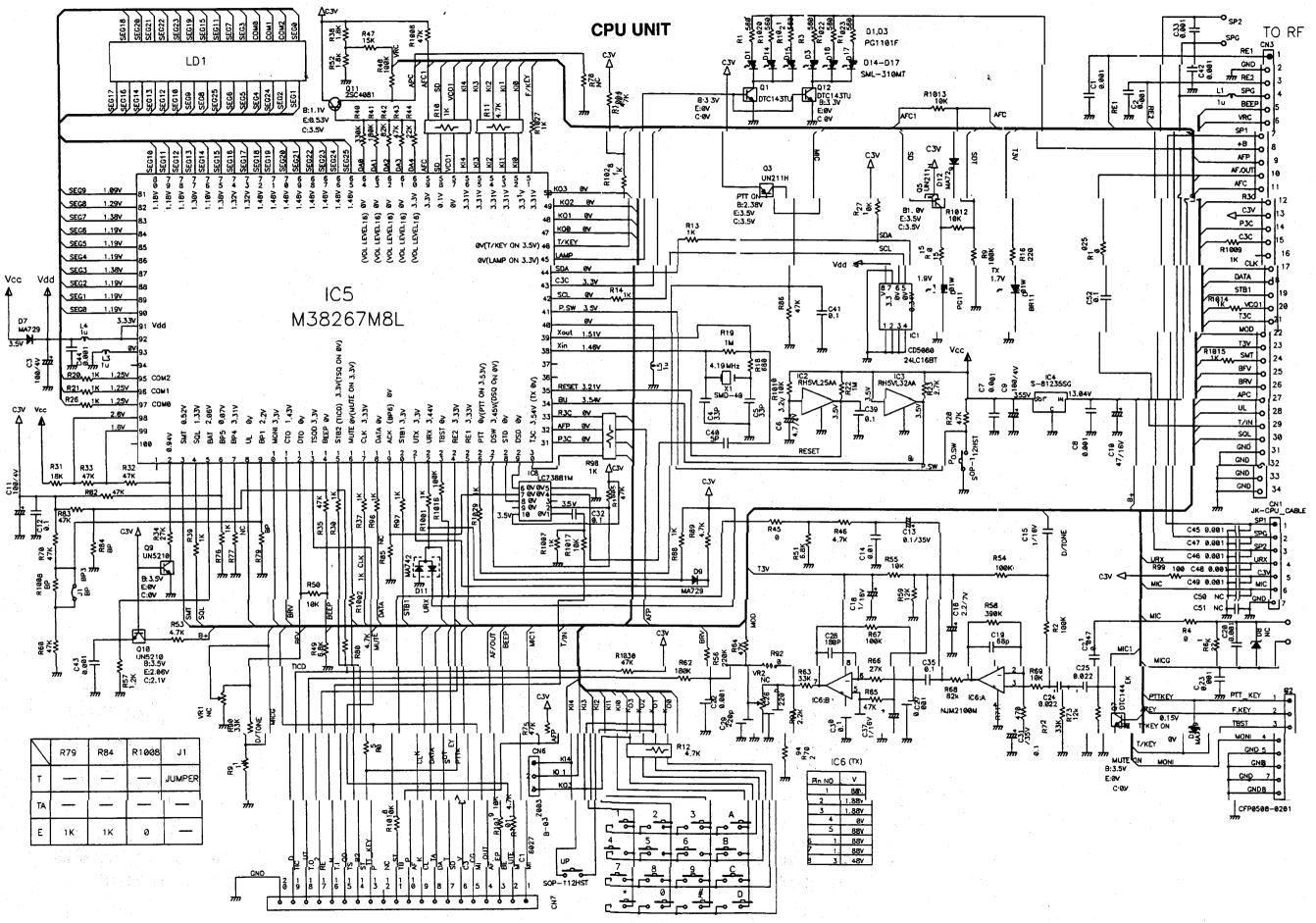


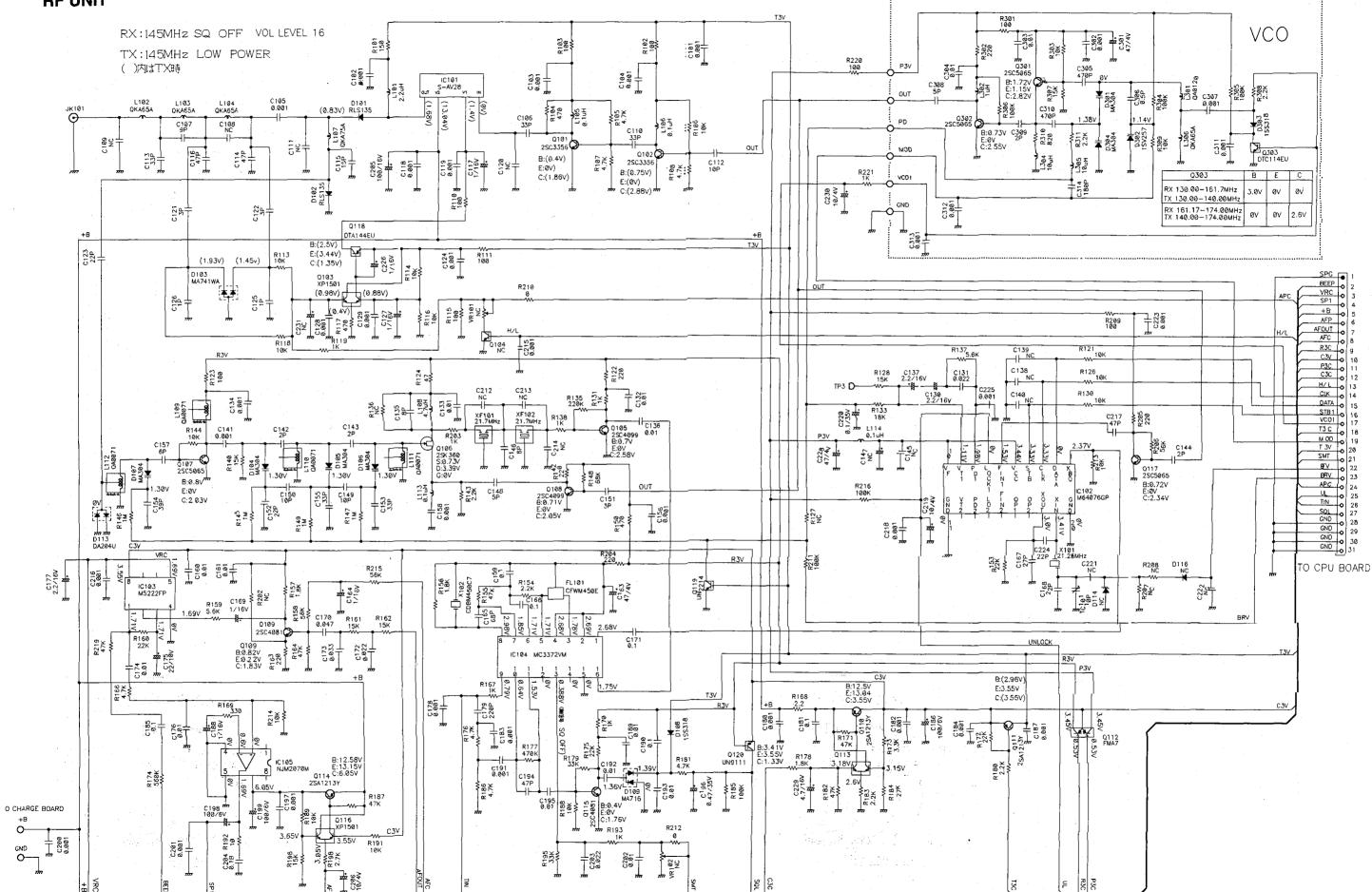



CIRCUIT DIAGRAM


VCO UNIT


SW UNIT


SP-JACK UNIT



CHARGE UNIT

1

RF UNIT

+B

0-